Перевод "AMPA receptor"

en.wikipedia.org, “AMPA receptor”, public translation into Russian from English More about this translation.

See also 64 similar translations

Translate into another language.

Participants

Join Translated.by to translate! If you already have a Translated.by account, please sign in.
If you do not want to register an account, you can sign in with OpenID.
Pages: ← previous Ctrl next next untranslated
1 2 3 4 5 6 7 8 9

AMPA receptor

The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (also known as AMPA receptor, AMPAR, or quisqualate receptor) is a non-NMDA-type ionotropic transmembrane receptor for glutamate that mediates fast synaptic transmission in the central nervous system (CNS). Its name is derived from its ability to be activated by the artificial glutamate analog AMPA. The receptor was discovered by Tage Honore and colleagues at the School of Pharmacy in Copenhagen, and published in 1982 in the Journal of Neurochemistry. AMPARs are found in many parts of the brain and are the most commonly found receptor in the nervous system. The AMPA receptor GluA2 (GluR2) tetramer was the first and currently only glutamate receptor ion channel to be crystallized.

Structure and function

Subunit composition

AMPARs are composed of four types of subunits, designated as GluR1 (GRIA1), GluR2 (GRIA2), GluR3 (GRIA3), and GluR4, alternatively called GluRA-D2 (GRIA4), which combine to form tetramers. Most AMPARs are heterotetrameric, consisting of symmetric 'dimer of dimers' of GluR2 and either GluR1, GluR3 or GluR4. Dimerization starts in the Endoplasmic reticulum with the interaction of n-terminal LIVBP domains, then "zips up" through the ligand-binding domain into the transmembrane ion pore.

The conformation of the subunit protein in the plasma membrane caused controversy for some time. While the amino acid sequence of the subunit indicated that there seemed to be four transmembrane domains (parts of the protein that pass through the plasma membrane), proteins interacting with the subunit indicated that the N-terminus seemed to be extracellular, while the C-terminus seemed to be intracellular. However, if each of the four transmembrane domains went all the way through the plasma membrane, then the two termini would have to be on the same side of the membrane. It was eventually discovered that the second transmembrane domain is not in fact trans at all, but kinks back on itself within the membrane and returns to the intracellular side (see schematic diagram). When the four subunits of the tetramer come together, this second membranous domain forms the ion-permeable pore of the receptor.

Pages: ← previous Ctrl next next untranslated
1 2 3 4 5 6 7 8 9